Last updated: 2021-11-19

Checks: 7 0

Knit directory: invitroOA_pilot_repository/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210119) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3962af3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/.DS_Store
    Ignored:    code/bulkRNA_preprocessing/.snakemake/conda-archive/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/conda/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/locks/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/shadow/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/singularity/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/tmp.3ekfs3n5/
    Ignored:    code/bulkRNA_preprocessing/fastq/
    Ignored:    code/bulkRNA_preprocessing/out/
    Ignored:    code/single_cell_preprocessing/.snakemake/conda-archive/
    Ignored:    code/single_cell_preprocessing/.snakemake/conda/
    Ignored:    code/single_cell_preprocessing/.snakemake/locks/
    Ignored:    code/single_cell_preprocessing/.snakemake/shadow/
    Ignored:    code/single_cell_preprocessing/.snakemake/singularity/
    Ignored:    code/single_cell_preprocessing/YG-AH-2S-ANT-1_S1_L008/
    Ignored:    code/single_cell_preprocessing/YG-AH-2S-ANT-2_S2_L008/
    Ignored:    code/single_cell_preprocessing/demuxlet/.DS_Store
    Ignored:    code/single_cell_preprocessing/fastq/
    Ignored:    data/external_scRNA/Chou_et_al2020/
    Ignored:    data/external_scRNA/Jietal2018/
    Ignored:    data/external_scRNA/Wuetal2021/
    Ignored:    data/external_scRNA/merged_external_scRNA.rds
    Ignored:    data/poweranalysis/alasoo_et_al/
    Ignored:    output/GO_terms_enriched.csv
    Ignored:    output/topicModel_k=6.rds
    Ignored:    output/topicModel_k=7.rds
    Ignored:    output/topicModel_k=8.rds
    Ignored:    output/voom_results.rds

Untracked files:
    Untracked:  analysis/RT-PCR.Rmd
    Untracked:  data/Homo_sapiens_Bgee_14_2/
    Untracked:  data/anatdata.RData
    Untracked:  data/qPCR_results.csv
    Untracked:  data/release.tsv
    Untracked:  data/species_Bgee_14_2.tsv

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/DEanalysis_bulkRNA.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/preProcess_scRNA.Rmd) and HTML (docs/preProcess_scRNA.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 7cb9196 Anthony Hung 2021-01-28 knit anlaysis files
Rmd 1b6031b Anthony Hung 2021-01-28 add human.vcf to repo
html 37a702d Anthony Hung 2021-01-21 add clustering details
Rmd 58e93fd Anthony Hung 2021-01-21 forgo the grid
html 58e93fd Anthony Hung 2021-01-21 forgo the grid
Rmd 89d8ddd Anthony Hung 2021-01-21 add three rows
html 89d8ddd Anthony Hung 2021-01-21 add three rows
Rmd 32e5716 Anthony Hung 2021-01-21 add gridextra
Rmd 78cfbcd Anthony Hung 2021-01-21 finish paring down files
Rmd e0e89e1 Anthony Hung 2021-01-21 download annotations and finish preprocessing of bulkRNA
Rmd 99c70b8 Anthony Hung 2021-01-20 update external data
html 99c70b8 Anthony Hung 2021-01-20 update external data
Rmd 446bf4b Anthony Hung 2021-01-20 add to gitignore
Rmd 1ec66ea Anthony Hung 2021-01-20 add information desribing preprocessing scran
Rmd 28f57fa Anthony Hung 2021-01-19 Add files for analysis

Introduction

This page will walk through the steps to go from the raw 10x sequencing fastq files to a count matrix and demuxlet assignment of droplets to individuals. This involves running a Snakemake pipeline located in the code directory and some code in R. The end product are seurat objects containing the raw count matrices and assignment to one of the three individuals and two treatment groups (strain or unstrain) for each of the two 10x GEM wells used in the sequencing experiment.

Run the Snakemake Pipeline after downloading necessary files and creating the conda environment (see README.txt)

  1. Move the fastq files from all samples (these are output files from 10x runs, containing both forward and reverse sequences) into the folder code/single_cell_preprocessing/fastq/. Undetermined data files are not required.

  2. Modify the code/single_cell_preprocessing/Pipeline/cluster_solo.json file to correspond to the computing cluster you are working with.

  3. Unzip the whitelist file in the code/single_cell_preprocessing/ directory.

  4. Install the conda working by running “conda env create –file environment.yaml”

  5. Run “source activate dropseq2” to activate the conda environment.

  6. Run the file “submit.sh”.

Load files into R

After running the pipeline, two directories will be created corresponding to the two 10x GEM well involved in the sequencing experiment (“YG-AH-2S-ANT-1_S1_L008” and “YG-AH-2S-ANT-2_S2_L008”). These directories contain the demuxlet and STAR SOLO outputs for each 10x GEM well

Details about the individualXtreatment status of the samples that were pooled for each of the two GEM wells: ANT1: (NA19160 unstrained; NA18856 unstrained; NA18855 strained) ANT2: (NA19160 strained; NA18855 unstrained)

library(data.table)
library(Matrix)
library(Seurat)
library(readr)
library(stringr)
library(plyr)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:plyr':

    arrange, count, desc, failwith, id, mutate, rename, summarise,
    summarize
The following objects are masked from 'package:data.table':

    between, first, last
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
## link to directories containing data files (count matrices)
proj_dir <- "code/single_cell_preprocessing/"
ANT1_dir <- paste0(proj_dir, "YG-AH-2S-ANT-1_S1_L008/")
ANT2_dir <- paste0(proj_dir, "YG-AH-2S-ANT-2_S2_L008/")

#read in data

##Gene Output from STARSOLO
#ANT1
demuxlet1 <- fread(paste0(ANT1_dir, "demuxlet.best", sep = ""))
count_data1 <- readMM(paste0(ANT1_dir, "Gene/filtered/matrix.mtx"))
genes1 <- read_tsv(paste0(ANT1_dir, "Gene/filtered/genes.tsv"), col_names = F)
Parsed with column specification:
cols(
  X1 = col_character(),
  X2 = col_character()
)
barcodes1 <- as.data.frame(read_tsv(paste0(ANT1_dir, "Gene/filtered/barcodes.tsv"), col_names = F))
Parsed with column specification:
cols(
  X1 = col_character()
)
#ANT2
demuxlet2 <- fread(paste0(ANT2_dir, "demuxlet.best", sep = ""))
count_data2 <- readMM(paste0(ANT2_dir, "Gene/filtered/matrix.mtx"))
genes2 <- read_tsv(paste0(ANT2_dir, "Gene/filtered/genes.tsv"), col_names = F)
Parsed with column specification:
cols(
  X1 = col_character(),
  X2 = col_character()
)
barcodes2 <- as.data.frame(read_tsv(paste0(ANT2_dir, "Gene/filtered/barcodes.tsv"), col_names = F))
Parsed with column specification:
cols(
  X1 = col_character()
)

Based on the demuxlet output, assign label for barcodes based on “BEST” output and filter for “SNG-” barcodes

#this function returns a dataframe with two columns, one corresponding to the barcodes and one corresponding to the label given by demuxlet
return_singlet_label <- function(barcodes, demuxlet.out){
  labels <- demuxlet.out$BEST[match(unlist(barcodes), demuxlet.out$BARCODE)]
  return(cbind(barcodes, labels))
}

barcodes1_labeled <- return_singlet_label(barcodes1, demuxlet1)
barcodes2_labeled <- return_singlet_label(barcodes2, demuxlet2)

#table of singlets/multiplets in the filtered data based on demuxlet
table(barcodes1_labeled$labels)

DBL-NA18855-NA18856-0.500 DBL-NA19160-NA18855-0.500 
                       13                         6 
DBL-NA19160-NA18856-0.500               SNG-NA18855 
                        7                       411 
              SNG-NA18856               SNG-NA19160 
                      452                       260 
table(barcodes2_labeled$labels)

DBL-NA18855-NA18856-0.500 DBL-NA18855-NA19160-0.500 
                       20                      2719 
DBL-NA18856-NA18855-0.500 DBL-NA19160-NA18855-0.500 
                        4                      5650 
DBL-NA19160-NA18856-0.500               SNG-NA18855 
                       22                      4990 
              SNG-NA19160 
                     1506 
## filter for droplets in the count data that are singlets (remove multiplets)
#ANT1
demuxlet_single1 <- demuxlet1 %>%
     dplyr::filter(grepl("SNG-", BEST))
singlets_index1 <- unlist(lapply(barcodes1_labeled$X1,"%in%", table = demuxlet_single1$BARCODE), use.names = F) #get index of barcodes that are singlets
barcodes_singlets1 <- barcodes1_labeled[singlets_index1,] #use index to subset matrix + barcode names
count_data_singlets1 <- count_data1[,singlets_index1]

#ANT2
demuxlet_single2 <- demuxlet2 %>%
     dplyr::filter(grepl("SNG-", BEST))
singlets_index2 <- unlist(lapply(barcodes2_labeled$X1,"%in%", table = demuxlet_single2$BARCODE), use.names = F) #get index of barcodes that are singlets
barcodes_singlets2 <- barcodes2_labeled[singlets_index2,] #use index to subset matrix + barcode names
count_data_singlets2 <- count_data2[,singlets_index2]

Create Seurat object for each dataset (for singlet barcodes) and add metadata in the form of singlet identity for each barcode.

#Change labels to reflect strain/unstrain based on prior knowledge of which strainXindividual combinations went into each pool

strainIndlabels1 <- revalue(barcodes_singlets1$labels,
                            c("SNG-NA18856"= "NA18856_Unstrain",
                              "SNG-NA18855" = "NA18855_Strain",
                              "SNG-NA19160" = "NA19160_Unstrain"))

strainIndlabels2 <- revalue(barcodes_singlets2$labels,
                            c("SNG-NA18855" = "NA18855_Unstrain",
                              "SNG-NA19160" = "NA19160_Strain"))


rownames(count_data_singlets1) <- genes1$X2
colnames(count_data_singlets1) <- barcodes_singlets1$X1

ANT1_seurat <- CreateSeuratObject(counts = count_data_singlets1, project = "ANT1") %>%
  AddMetaData(strainIndlabels1, col.name = "labels")
Warning: Non-unique features (rownames) present in the input matrix, making
unique
rownames(count_data_singlets2) <- genes2$X2
colnames(count_data_singlets2) <- barcodes_singlets2$X1

ANT2_seurat <- CreateSeuratObject(counts = count_data_singlets2, project = "ANT2") %>%
  AddMetaData(strainIndlabels2, col.name = "labels")
Warning: Non-unique features (rownames) present in the input matrix, making
unique

Merge the two seurat objects (without any data integration) and filter out unwanted cells based on QC metrics

This merged dataset is used to fit the topic model in a later file. Based on the clustering results, which show that the cells from the same individual from different 10x GEM well overlap, there does not seem to be a large contribution of technical effects from 10x GEM well on gene expression.

ANT1.2 <- merge(x = ANT1_seurat,
                   y = ANT2_seurat,
                   add.cell.ids = c("ANT1", "ANT2"),
                   merge.data = F,
                   project = "OAStrain")

#compute the percentage of reads coming from mitochondrial genes for each droplet
ANT1.2[["percent.mt"]] <- PercentageFeatureSet(ANT1.2, pattern = "^MT-")

#visualize QC metrics as violin plot
VlnPlot(ANT1.2, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

Version Author Date
89d8ddd Anthony Hung 2021-01-21
VlnPlot(ANT1.2, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3, group.by = "labels")

Version Author Date
89d8ddd Anthony Hung 2021-01-21
# FeatureScatter is typically used to visualize feature-feature relationships, but can be used
# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.
plot1 <- FeatureScatter(ANT1.2, feature1 = "nCount_RNA", feature2 = "percent.mt")
plot2 <- FeatureScatter(ANT1.2, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
CombinePlots(plots = list(plot1, plot2))
Warning: CombinePlots is being deprecated. Plots should now be combined
using the patchwork system.

Version Author Date
89d8ddd Anthony Hung 2021-01-21
#Filter barcodes based on nFeatures and %MT 
ANT1.2 <- subset(ANT1.2, subset = nFeature_RNA > 2000 & percent.mt < 10)
table(ANT1.2$labels)

  NA18855_Strain NA18855_Unstrain NA18856_Unstrain   NA19160_Strain 
             348              586              395              264 
NA19160_Unstrain 
             222 
#Look at QC metrics after filtering
VlnPlot(ANT1.2, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3, group.by = "labels")

Version Author Date
89d8ddd Anthony Hung 2021-01-21
dim(ANT1.2)
[1] 33538  1815
# Look at how the samples cluster after merging without any integration methods applied
#normalize
ANT1.2 <- NormalizeData(ANT1.2, normalization.method = "LogNormalize", scale.factor = 10000)
#find variable features and run a PCA
ANT1.2 <- FindVariableFeatures(ANT1.2, selection.method = "vst", nfeatures = 2000)
ANT1.2 <- ScaleData(ANT1.2, verbose = FALSE)
nPC <- 100
ANT1.2 <- RunPCA(ANT1.2, features = VariableFeatures(object = ANT1.2), npcs = nPC)
PC_ 1 
Positive:  VIM, TIMP3, INHBA, TPM1, MAP3K7CL, SPINT2, PDLIM3, SOX4, C12orf75, TUBA1A 
       CCND2, CPE, RDH10, LZTS1, PMEPA1, LMO7, CDKN2B, TCAF1, MARCKSL1, UCHL1 
       GSTO1, XRCC4, IGFL2, FN1, FSCN1, RAI14, STMN1, CTGF, JPT1, MYH9 
Negative:  IFITM3, SAA1, SPON2, PDPN, TMEM141, PTGDS, DPP7, OTULINL, CDKN1C, TSPO 
       PRLR, DCN, LUM, FKBP5, PNMT, GGT5, MMP23B, NUPR1, TMEM88, PLIN2 
       SERPINF1, IQGAP2, ADAMTS2, SMOC2, APOD, GMPR, FAM213A, FMO5, TXNDC16, MME 
PC_ 2 
Positive:  RPS4Y1, SLC3A2, EIF1AY, FTH1, SERPINE1, PTGR1, DDIT3, EIF1B, FAM129A, SQSTM1 
       DDX3Y, SPON2, MT1E, MGST1, CEBPB, BTG1, CLIC1, TRIB3, KCNG1, EZR 
       DUSP1, CYSTM1, PRDX6, TSPO, IFRD1, IMPA2, MAGEH1, NFIL3, YWHAQ, BLVRB 
Negative:  CHCHD2, MDK, MFAP4, PLAC9, OGN, COL15A1, B2M, SLC40A1, COL6A3, MEST 
       SPON1, FIBIN, HLA-A, MXRA5, ACTA2, RIMS2, IGFBP3, KCTD12, PITX1, PRSS35 
       CEMIP, GLIPR1, COL6A1, ADAM12, CCND2, SBF2-AS1, LURAP1L, FST, GNG11, CHN1 
PC_ 3 
Positive:  OGFRL1, SMOC2, AQP1, TMEM88, GPC3, SELENOP, PROCR, ODAPH, CLTB, PRDX6 
       PLAC9, MEST, IGFBP7, PLA2G16, FLT1, SLIT3, ATRNL1, IGFBP2, TSPAN15, NEDD9 
       PDZRN4, TMEM176B, HAPLN4, RGS4, SRPX, NSG1, COL4A4, AC078850.1, TMEM176A, TPD52L1 
Negative:  MGST1, TGFBI, DDIT4, TRIB3, ZFAS1, FN1, SLC7A11, LGALS1, FTH1, SLFN5 
       AP002884.1, TXNRD1, LIMS1, GCLM, COL6A3, C1R, CRABP2, TSC22D3, PHGDH, HLA-B 
       ASNS, SLC12A8, DDIT3, NFIL3, NQO1, PMAIP1, TCEA1, GPR1, PCK2, AC040170.1 
PC_ 4 
Positive:  IL6ST, TIMP1, COL6A2, COL6A1, HOPX, FBLN2, NR2F1, LTBP1, COL15A1, F3 
       SLC22A3, MME, MFAP4, MYL10, PDGFRA, SPON1, FLT1, TGM2, GAS7, TIMP3 
       CLMP, EGFL6, GDF6, EGFLAM, HGF, VTN, TSPAN9, FGF7, LTBP2, COL11A1 
Negative:  NRG1, MFAP5, ANOS1, ODAPH, PROCR, HTRA1, NKAIN4, AL356056.1, ANXA3, SPINT1 
       ODC1, PRSS23, SMOC2, ANGPTL7, PDZRN4, TXNRD2, TUBA1A, ENAH, CDH6, NTRK2 
       CLU, CDKN2A, DYNC1I1, SFRP1, PLAC9, PPME1, GADD45A, NCAM1, PLXDC1, GATM 
PC_ 5 
Positive:  CDK1, PCLAF, CENPM, UBE2C, RRM2, TOP2A, NUSAP1, PTTG1, TYMS, PBK 
       BIRC5, CENPF, HMMR, SPC25, DEPDC1, CEP55, TUBA1B, FOXM1, SHCBP1, HMGB2 
       ORC6, NCAPG, GINS2, TROAP, TK1, GTSE1, MAD2L1, TPX2, ANLN, KRT18 
Negative:  FN1, FST, THBS2, WNT2, CXCL14, LOX, FILIP1L, NEAT1, RPRML, RAMP1 
       LUM, CKB, HTRA1, PLXDC1, TSPAN13, CCND2, FAP, COL6A2, IFI16, PLXDC2 
       PSPN, EGFL6, COMP, TDO2, RCN3, HSPB6, RPS4Y1, CD55, GPC4, IGFL3 
#Run clustering and UMAP
num_PCs <- 50
ANT1.2 <- FindNeighbors(ANT1.2, dims = 1:num_PCs)
Computing nearest neighbor graph
Computing SNN
ANT1.2 <- FindClusters(ANT1.2, resolution = 0.5)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 1815
Number of edges: 85550

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8146
Number of communities: 7
Elapsed time: 0 seconds
#Run UMAP
ANT1.2 <- RunUMAP(ANT1.2, dims = 1:num_PCs)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
09:58:57 UMAP embedding parameters a = 0.9922 b = 1.112
09:58:57 Read 1815 rows and found 50 numeric columns
09:58:57 Using Annoy for neighbor search, n_neighbors = 30
09:58:57 Building Annoy index with metric = cosine, n_trees = 50
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
09:58:58 Writing NN index file to temp file /tmp/RtmpXd3o0f/file1613975457851
09:58:58 Searching Annoy index using 1 thread, search_k = 3000
09:58:58 Annoy recall = 100%
09:58:58 Commencing smooth kNN distance calibration using 1 thread
09:58:59 Initializing from normalized Laplacian + noise
09:58:59 Commencing optimization for 500 epochs, with 73932 positive edges
09:59:05 Optimization finished
p1 <- DimPlot(ANT1.2, reduction = "umap")
p2 <- DimPlot(ANT1.2, reduction = "umap", group.by = "orig.ident")
p3 <- DimPlot(ANT1.2, reduction = "umap", group.by = "labels")
p1

Version Author Date
37a702d Anthony Hung 2021-01-21
58e93fd Anthony Hung 2021-01-21
89d8ddd Anthony Hung 2021-01-21
p2

Version Author Date
37a702d Anthony Hung 2021-01-21
p3

Version Author Date
37a702d Anthony Hung 2021-01-21

Save Seurat objects

saveRDS(ANT1.2, "data/ANT1_2.rds")

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] dplyr_1.0.2       plyr_1.8.6        stringr_1.4.0     readr_1.3.1      
[5] Seurat_3.2.3      Matrix_1.2-18     data.table_1.13.0

loaded via a namespace (and not attached):
  [1] Rtsne_0.15            colorspace_2.0-0      deldir_0.1-23        
  [4] ellipsis_0.3.1        ggridges_0.5.1        rprojroot_2.0.2      
  [7] fs_1.3.1              spatstat.data_1.7-0   farver_2.0.3         
 [10] leiden_0.3.1          listenv_0.8.0         npsurv_0.4-0         
 [13] ggrepel_0.9.0         RSpectra_0.15-0       codetools_0.2-16     
 [16] splines_3.6.1         lsei_1.2-0            knitr_1.23           
 [19] polyclip_1.10-0       jsonlite_1.7.2        workflowr_1.6.2      
 [22] ica_1.0-2             cluster_2.1.0         png_0.1-7            
 [25] uwot_0.1.10           shiny_1.3.2           sctransform_0.3.2    
 [28] compiler_3.6.1        httr_1.4.2            lazyeval_0.2.2       
 [31] later_1.1.0.1         htmltools_0.5.0       tools_3.6.1          
 [34] rsvd_1.0.1            igraph_1.2.4.1        gtable_0.3.0         
 [37] glue_1.4.2            RANN_2.6.1            reshape2_1.4.3       
 [40] rappdirs_0.3.1        Rcpp_1.0.5            spatstat_1.64-1      
 [43] scattermore_0.7       vctrs_0.3.6           gdata_2.18.0         
 [46] nlme_3.1-140          lmtest_0.9-37         xfun_0.8             
 [49] globals_0.12.5        mime_0.9              miniUI_0.1.1.1       
 [52] lifecycle_0.2.0       irlba_2.3.3           gtools_3.8.1         
 [55] goftest_1.2-2         future_1.18.0         MASS_7.3-52          
 [58] zoo_1.8-8             scales_1.1.1          hms_0.5.3            
 [61] promises_1.1.1        spatstat.utils_1.17-0 parallel_3.6.1       
 [64] RColorBrewer_1.1-2    yaml_2.2.1            reticulate_1.16      
 [67] pbapply_1.4-0         gridExtra_2.3         ggplot2_3.3.3        
 [70] rpart_4.1-15          stringi_1.4.6         caTools_1.17.1.2     
 [73] rlang_0.4.10          pkgconfig_2.0.3       matrixStats_0.57.0   
 [76] bitops_1.0-6          evaluate_0.14         lattice_0.20-41      
 [79] ROCR_1.0-7            purrr_0.3.4           tensor_1.5           
 [82] labeling_0.4.2        patchwork_1.1.0       htmlwidgets_1.5.2    
 [85] cowplot_1.1.0         tidyselect_1.1.0      RcppAnnoy_0.0.18     
 [88] magrittr_2.0.1        R6_2.5.0              gplots_3.0.1.1       
 [91] generics_0.0.2        withr_2.3.0           pillar_1.4.7         
 [94] whisker_0.3-2         mgcv_1.8-28           fitdistrplus_1.0-14  
 [97] survival_2.44-1.1     abind_1.4-5           tibble_3.0.4         
[100] future.apply_1.3.0    crayon_1.3.4          KernSmooth_2.23-15   
[103] plotly_4.9.2.1        rmarkdown_1.13        grid_3.6.1           
[106] git2r_0.26.1          digest_0.6.27         xtable_1.8-4         
[109] tidyr_1.1.2           httpuv_1.5.1          munsell_0.5.0        
[112] viridisLite_0.3.0