Last updated: 2021-02-22

Checks: 7 0

Knit directory: invitroOA_pilot_repository/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210119) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3500638. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/conda-archive/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/conda/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/locks/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/shadow/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/singularity/
    Ignored:    code/bulkRNA_preprocessing/.snakemake/tmp.3ekfs3n5/
    Ignored:    code/bulkRNA_preprocessing/fastq/
    Ignored:    code/bulkRNA_preprocessing/out/
    Ignored:    code/single_cell_preprocessing/.snakemake/conda-archive/
    Ignored:    code/single_cell_preprocessing/.snakemake/conda/
    Ignored:    code/single_cell_preprocessing/.snakemake/locks/
    Ignored:    code/single_cell_preprocessing/.snakemake/shadow/
    Ignored:    code/single_cell_preprocessing/.snakemake/singularity/
    Ignored:    code/single_cell_preprocessing/YG-AH-2S-ANT-1_S1_L008/
    Ignored:    code/single_cell_preprocessing/YG-AH-2S-ANT-2_S2_L008/
    Ignored:    code/single_cell_preprocessing/demuxlet/.DS_Store
    Ignored:    code/single_cell_preprocessing/fastq/
    Ignored:    data/external_scRNA/Chou_et_al2020/
    Ignored:    data/external_scRNA/Jietal2018/
    Ignored:    data/external_scRNA/Wuetal2021/
    Ignored:    data/external_scRNA/merged_external_scRNA.rds
    Ignored:    data/poweranalysis/alasoo_et_al/
    Ignored:    output/GO_terms_enriched.csv
    Ignored:    output/topicModel_k=6.rds
    Ignored:    output/topicModel_k=7.rds
    Ignored:    output/topicModel_k=8.rds
    Ignored:    output/voom_results.rds

Unstaged changes:
    Modified:   .gitignore

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/topicModel_scRNA.Rmd) and HTML (docs/topicModel_scRNA.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 3500638 Anthony Hung 2021-02-22 add new GH data
Rmd 0d29d56 Anthony Hung 2021-02-18 change colors for structure plots
html 0d29d56 Anthony Hung 2021-02-18 change colors for structure plots
html 62f071d Anthony Hung 2021-01-26 update index
Rmd 9003ac9 Anthony Hung 2021-01-26 add supplementary file strcutre plots
Rmd 7221438 Anthony Hung 2021-01-26 add addiitonal figures for supplement
html 37a702d Anthony Hung 2021-01-21 add clustering details
Rmd 98724f0 Anthony Hung 2021-01-21 finish topic model rmd
html 98724f0 Anthony Hung 2021-01-21 finish topic model rmd
Rmd 99c70b8 Anthony Hung 2021-01-20 update external data
Rmd 1ec66ea Anthony Hung 2021-01-20 add information desribing preprocessing scran
Rmd 98e0a1d Anthony Hung 2021-01-20 add note about running the bash code separately
Rmd e24a0cd Anthony Hung 2021-01-20 Added download links for external data files
Rmd 28f57fa Anthony Hung 2021-01-19 Add files for analysis

Introduction

This code will load in the combined scRNA seq data from external datasets combined with the iPSC-chondrocytes from the current study and fit a topic model (k=7) to the data. It then interprets the topics.

Load data and packages

The merged data were created by running the code located in Aggregation of external scRNA-seq data for topic model.

library(fastTopics)
library(Seurat)
library(Matrix)

#load data (stored in a seurat object)
merged_data <- readRDS("data/external_scRNA/merged_external_scRNA.rds")

#Extract raw count matrix from seurat object and get it in correct format for fastTopics
#need to fit the model to the count data (unintegrated)
raw_counts <- merged_data@assays$RNA@counts
#remove genes without any counts in droplets
raw_counts <- raw_counts[rowSums(raw_counts > 0) > 0,] 
#get into correct orientation (barcodes x features)
raw_counts <- t(raw_counts)
dim(raw_counts)
[1] 33218 36470

Use fastTopics functions to fit a topic model k=7 to the data

if (file.exists("output/topicModel_k=7.rds")) {
  fit <- readRDS("output/topicModel_k=7.rds")
} else {
  fit <- fit_poisson_nmf(raw_counts,k = 7,numiter = 150)
  saveRDS(fit, "output/topicModel_k=7.rds")
}

#compute weights and topics (rescale each of l and f to add up to 1)
l <- fit$L
f <- fit$F
weights <- sweep(l, MARGIN = 2, colSums(f), `*`)
scale <- rowSums(weights)
weights <- weights / scale
topics <- f / colSums(f) # add up to 1

Heatmap

Here we select a few marker genes to represent iPSCs, MSCs, Hepatocytes, and Chondrocytes and visualize the relative loadings of these marker genes in each of the 7 fitted topics using a scaled heatmap.

library(stringr)
library(pheatmap)
library(dummies)
dummies-1.5.6 provided by Decision Patterns
library(tidyverse)
Registered S3 method overwritten by 'cli':
  method     from    
  print.boxx spatstat
── Attaching packages ────────────────────────────────── tidyverse 1.3.0 ──
✓ ggplot2 3.3.3     ✓ purrr   0.3.4
✓ tibble  3.0.4     ✓ dplyr   1.0.2
✓ tidyr   1.1.2     ✓ forcats 0.4.0
✓ readr   1.3.1     
── Conflicts ───────────────────────────────────── tidyverse_conflicts() ──
x tidyr::expand() masks Matrix::expand()
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
x tidyr::pack()   masks Matrix::pack()
x tidyr::unpack() masks Matrix::unpack()
#selected markers for different cell types
MSC_markers <- c("THY1", "NT5E", "ENG")
Chondrocyte_markers <- c("COL2A1", "ACAN", "SOX9", "SOX5", "SOX6", "COL9A1")
Hepatocyte_markers <- c("ALB")
iPSC_markers <- c("POU5F1", "SOX2", "NANOG")
markers <- c(iPSC_markers, Hepatocyte_markers, Chondrocyte_markers, MSC_markers)
#annotate the markers with the cell type they represent
markers_description <- data.frame(marker_type = c(rep("iPSC", 3), rep("Hepatocyte", 1), rep("Chondrocyte", 6), rep("MSC", 3)))
rownames(markers_description) <- markers

#plot heatmap of relative expression of marker genes in each topic
topics_markers <- topics[markers,]
pheatmap(topics_markers, cluster_cols = FALSE, cluster_rows = FALSE, annotation_row = markers_description, scale = "row")

Version Author Date
0d29d56 Anthony Hung 2021-02-18
98724f0 Anthony Hung 2021-01-21

Structure Plot

The structure plot represents the topic membership proportions of individual cells in each of the cell types using stacked bar plots.

#get labels of cells (cell type) and reorder to group them
sample <- as.data.frame(merged_data@meta.data$Cell.Type)
sample_labels <- sample %>% 
     dplyr::transmute(Cell.Type = stringr::word(`merged_data@meta.data$Cell.Type`, start = 1))
rownames(sample_labels) <- rownames(merged_data@meta.data)
sample <- sample_labels %>% 
     dplyr::arrange(Cell.Type)


set.seed(1)
topic_colors <- c("gold", "grey", "firebrick", "forestgreen", "royalblue", "turquoise", "salmon")
topics_order <- c(2, 3, 1, 7, 5, 4, 6)
rows_keep <- sort(c(sample(which(sample_labels$Cell.Type == "Hepatocyte"), 800),
               sample(which(sample_labels$Cell.Type == "iPSC"), 800),
               sample(which(sample_labels$Cell.Type == "iPSC-MSC"), 800),
               which(sample_labels$Cell.Type == "iPSC-Chondrocyte"),
               sample(which(sample_labels$Cell.Type == "iPSC-Chondro_GAH"), 800),
               sample(which(sample_labels$Cell.Type == "iPSC-Osteo"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d7"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d14"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d28"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d42"), 800),
               sample(which(sample_labels$Cell.Type == "chou_chondrocyte"), 800),
               sample(which(sample_labels$Cell.Type == "ji_chondrocyte"), 800)))
structure_plot <- structure_plot(select(poisson2multinom(fit),loadings = rows_keep),
                      grouping = factor(sample_labels[rows_keep,"Cell.Type"], 
                                        c("Hepatocyte", "iPSC", "iPSC-MSC", 
                                          "iPSC-Osteo", "iPSC-Chondro_GAH",
                                          "iPSC-Chondrocyte", "Wu_chondrogenic_pellet_d7", "Wu_chondrogenic_pellet_d14", "Wu_chondrogenic_pellet_d28", "Wu_chondrogenic_pellet_d42", "chou_chondrocyte", "ji_chondrocyte")),
                      topics = topics_order,
                      colors = topic_colors[topics_order],
                      perplexity = c(50),
                      n = 6043,gap = 100,num_threads = 4,verbose = FALSE)
print(structure_plot)

Version Author Date
0d29d56 Anthony Hung 2021-02-18
98724f0 Anthony Hung 2021-01-21

Differential Expression analysis

First, calculate differential occurrence of genes in individual topics vs all other topics.

diff_count_topics <- diff_count_analysis(fit, raw_counts)
Fitting 36470 x 7 = 255290 univariate Poisson models.
Computing log-fold change statistics.
Stabilizing log-fold change estimates using adaptive shrinkage.

Then plot the results using a volcanoplot for each topic

library(ggrepel)
library(cowplot)
volcano_plot_with_highlighted_genes <- function (diff_count_res, k, 
                                                 genes, ...) {
  dat <- data.frame(beta  = diff_count_res$beta[genes,k],
                    y     = abs(diff_count_res$Z[genes,k]),
                    label = genes) 
  rows <- match(genes,rownames(diff_count_res$beta))
  rownames(diff_count_res$beta)[rows] <- ""
  rownames(diff_count_res$Z)[rows] <- ""
  return(volcano_plot(diff_count_res,k = k,
                      ggplot_call = volcano_plot_ggplot_call,...) +
         geom_text_repel(data = dat,
                         mapping = aes(x = beta,y = y,label = label),
                         inherit.aes = FALSE,color = "black",size = 5,
                         fontface = "italic",segment.color = "black",
                         segment.size = 0.25,
                         na.rm = TRUE))
}


# This is used by volcano_plot_with_highlighted_genes to create the
# volcano plot.
ggplot_call_for_volcano_plot <- function (dat, y.label, topic.label) {
  ggplot(dat,aes_string(x = "beta",y = "y",fill = "mean",label = "label")) +
    geom_point(color = "white",stroke = 0.3,shape = 21,na.rm = TRUE) +
    scale_y_continuous(trans = "sqrt",
      breaks = c(0,1,2,5,10,20,50,100,200,500,1e3,2e3,5e3,1e4,2e4,5e4)) +
    scale_fill_gradient2(low = "deepskyblue",mid = "gold",high = "orangered",
                         midpoint = mean(range(dat$mean))) +
    geom_text_repel(color = "gray",size = 5,fontface = "italic",
                    segment.color = "gray",segment.size = 0.25,na.rm = TRUE) +
    labs(x = "log-fold change (\u03b2)",y = y.label,fill = "log10 mean") +
    theme_cowplot(font_size = 18) +
    theme(plot.title = element_text(size = 18,face = "plain"))}
#plots
p1 <- volcano_plot_with_highlighted_genes(diff_count_res = diff_count_topics,
                                          k = "k2",
                                          genes = NA,
                                          label_above_quantile = 0.9995) +
     #ylim(c(0,5000)) +
     guides(fill = "none") +
     ggtitle("topic 2 (Hepatocytes)")
p2 <- volcano_plot_with_highlighted_genes(diff_count_topics,
                                          "k3",
                                          NA,
                                          label_above_quantile = 0.9995) +
     #ylim(c(0,225)) +
     guides(fill = "none") +
     ggtitle("topic 3 (iPSCs)")
p3 <- volcano_plot_with_highlighted_genes(diff_count_topics,
                                          "k1",
                                          NA,
                                          label_above_quantile = 0.9995) +
     #ylim(c(0,225)) +
     guides(fill = "none") +
     ggtitle("topic 1 (iPSC-MSCs)")
p4 <- volcano_plot_with_highlighted_genes(diff_count_topics,
                                          "k7",
                                          NA,
                                          label_above_quantile = 0.9995) +
     #ylim(c(0,225)) +
     guides(fill = "none") +
     ggtitle("topic 7 (iPSC-Chondrocytes)")
p5 <- volcano_plot_with_highlighted_genes(diff_count_topics,
                                          "k5",
                                          NA,
                                          label_above_quantile = 0.9995) +
     #ylim(c(0,225)) +
     guides(fill = "none") +
     ggtitle("topic 5 (Chondrocyte 1)")
p6 <- volcano_plot_with_highlighted_genes(diff_count_topics,
                                          "k4",
                                          NA,
                                          label_above_quantile = 0.9995) +
     #ylim(c(0,225)) +
     guides(fill = "none") +
     ggtitle("topic 4 (Chondrocyte 2)")
p7 <- volcano_plot_with_highlighted_genes(diff_count_topics,
                                          "k6",
                                          NA,
                                          label_above_quantile = 0.9995) +
     #ylim(c(0,225)) +
     guides(fill = "none") +
     ggtitle("topic 6 (Chondrocyte 3)")
plot_grid(p1,p2,p3,p4,p5,p6,p7,nrow = 3,ncol = 3)

Version Author Date
3500638 Anthony Hung 2021-02-22
0d29d56 Anthony Hung 2021-02-18
62f071d Anthony Hung 2021-01-26
37a702d Anthony Hung 2021-01-21
98724f0 Anthony Hung 2021-01-21

For Supplement: Fit Topic models with k = 6 and k = 8 and plot a Structure plot in each case

if (file.exists("output/topicModel_k=6.rds")) {
  fit <- readRDS("output/topicModel_k=6.rds")
} else {
  fit <- fit_poisson_nmf(raw_counts,k = 6,numiter = 100)
  saveRDS(fit, "output/topicModel_k=6.rds")
}

#compute weights and topics (rescale each of l and f to add up to 1)
l <- fit$L
f <- fit$F
weights <- sweep(l, MARGIN = 2, colSums(f), `*`)
scale <- rowSums(weights)
weights <- weights / scale
topics <- f / colSums(f) # add up to 1


#get labels of cells (cell type) and reorder to group them
sample <- as.data.frame(merged_data@meta.data$Cell.Type)
sample_labels <- sample %>% 
     dplyr::transmute(Cell.Type = stringr::word(`merged_data@meta.data$Cell.Type`, start = 1))
rownames(sample_labels) <- rownames(merged_data@meta.data)
sample <- sample_labels %>% 
     dplyr::arrange(Cell.Type)

set.seed(1)
topic_colors <- c("turquoise", "firebrick", "grey", "salmon", "royalblue", "forestgreen")
topics_order <- c(3, 2, 4, 6, 5, 1)
rows_keep <- sort(c(sample(which(sample_labels$Cell.Type == "Hepatocyte"), 800),
               sample(which(sample_labels$Cell.Type == "iPSC"), 800),
               sample(which(sample_labels$Cell.Type == "iPSC-MSC"), 800),
               which(sample_labels$Cell.Type == "iPSC-Chondrocyte"),
               sample(which(sample_labels$Cell.Type == "iPSC-Chondro_GAH"), 800),
               sample(which(sample_labels$Cell.Type == "iPSC-Osteo"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d7"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d14"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d28"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d42"), 800),
               sample(which(sample_labels$Cell.Type == "chou_chondrocyte"), 800),
               sample(which(sample_labels$Cell.Type == "ji_chondrocyte"), 800)))
structure_plot <- structure_plot(select(poisson2multinom(fit),loadings = rows_keep),
                      grouping = factor(sample_labels[rows_keep,"Cell.Type"], 
                                        c("Hepatocyte", "iPSC", "iPSC-MSC", "iPSC-Osteo", 
                                          "iPSC-Chondro_GAH", "iPSC-Chondrocyte", "Wu_chondrogenic_pellet_d7", "Wu_chondrogenic_pellet_d14", "Wu_chondrogenic_pellet_d28", "Wu_chondrogenic_pellet_d42", "chou_chondrocyte", "ji_chondrocyte")),
                      topics = topics_order,
                      colors = topic_colors[topics_order],
                      perplexity = c(50),
                      n = 6043,gap = 100,num_threads = 4,verbose = FALSE)
print(structure_plot)

Version Author Date
0d29d56 Anthony Hung 2021-02-18
62f071d Anthony Hung 2021-01-26
if (file.exists("output/topicModel_k=8.rds")) {
  fit <- readRDS("output/topicModel_k=8.rds")
} else {
  fit <- fit_poisson_nmf(raw_counts,k = 8,numiter = 150)
  saveRDS(fit, "output/topicModel_k=8.rds")
}

#compute weights and topics (rescale each of l and f to add up to 1)
l <- fit$L
f <- fit$F
weights <- sweep(l, MARGIN = 2, colSums(f), `*`)
scale <- rowSums(weights)
weights <- weights / scale
topics <- f / colSums(f) # add up to 1


#get labels of cells (cell type) and reorder to group them
sample <- as.data.frame(merged_data@meta.data$Cell.Type)
sample_labels <- sample %>% 
     dplyr::transmute(Cell.Type = stringr::word(`merged_data@meta.data$Cell.Type`, start = 1))
rownames(sample_labels) <- rownames(merged_data@meta.data)
sample <- sample_labels %>% 
     dplyr::arrange(Cell.Type)

set.seed(1)
topic_colors <- c("royalblue", "turquoise","firebrick","gold","grey", "black", "salmon", "forestgreen")
topics_order <- c(5, 3, 4, 7, 6, 1, 8, 2)
rows_keep <- sort(c(sample(which(sample_labels$Cell.Type == "Hepatocyte"), 800),
               sample(which(sample_labels$Cell.Type == "iPSC"), 800),
               sample(which(sample_labels$Cell.Type == "iPSC-MSC"), 800),
               which(sample_labels$Cell.Type == "iPSC-Chondrocyte"),
               sample(which(sample_labels$Cell.Type == "iPSC-Chondro_GAH"), 800),
               sample(which(sample_labels$Cell.Type == "iPSC-Osteo"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d7"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d14"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d28"), 800),
               sample(which(sample_labels$Cell.Type == "Wu_chondrogenic_pellet_d42"), 800),
               sample(which(sample_labels$Cell.Type == "chou_chondrocyte"), 800),
               sample(which(sample_labels$Cell.Type == "ji_chondrocyte"), 800)))
structure_plot <- structure_plot(select(poisson2multinom(fit),loadings = rows_keep),
                      grouping = factor(sample_labels[rows_keep,"Cell.Type"], 
                                        c("Hepatocyte", "iPSC", "iPSC-MSC", "iPSC-Osteo", 
                                          "iPSC-Chondro_GAH", "iPSC-Chondrocyte", "Wu_chondrogenic_pellet_d7", "Wu_chondrogenic_pellet_d14", "Wu_chondrogenic_pellet_d28", "Wu_chondrogenic_pellet_d42", "chou_chondrocyte", "ji_chondrocyte")),
                      topics = topics_order,
                      colors = topic_colors[topics_order],
                      perplexity = c(50),
                      n = 6043,gap = 100,num_threads = 4,verbose = FALSE)
print(structure_plot)

Version Author Date
3500638 Anthony Hung 2021-02-22
0d29d56 Anthony Hung 2021-02-18
62f071d Anthony Hung 2021-01-26

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_1.1.0     ggrepel_0.9.0     forcats_0.4.0    
 [4] dplyr_1.0.2       purrr_0.3.4       readr_1.3.1      
 [7] tidyr_1.1.2       tibble_3.0.4      ggplot2_3.3.3    
[10] tidyverse_1.3.0   dummies_1.5.6     pheatmap_1.0.12  
[13] stringr_1.4.0     Matrix_1.2-18     Seurat_3.2.3     
[16] fastTopics_0.4-35

loaded via a namespace (and not attached):
  [1] readxl_1.3.1          backports_1.1.10      workflowr_1.6.2      
  [4] plyr_1.8.6            igraph_1.2.4.1        lazyeval_0.2.2       
  [7] splines_3.6.1         listenv_0.8.0         scattermore_0.7      
 [10] digest_0.6.27         invgamma_1.1          htmltools_0.5.0      
 [13] fansi_0.4.1           SQUAREM_2020.4        gdata_2.18.0         
 [16] magrittr_2.0.1        tensor_1.5            cluster_2.1.0        
 [19] ROCR_1.0-7            globals_0.12.5        modelr_0.1.8         
 [22] RcppParallel_5.0.2    matrixStats_0.57.0    MCMCpack_1.4-9       
 [25] prettyunits_1.1.1     colorspace_2.0-0      rvest_0.3.6          
 [28] rappdirs_0.3.1        haven_2.3.1           xfun_0.8             
 [31] crayon_1.3.4          jsonlite_1.7.2        spatstat_1.64-1      
 [34] spatstat.data_1.7-0   survival_2.44-1.1     zoo_1.8-8            
 [37] glue_1.4.2            polyclip_1.10-0       gtable_0.3.0         
 [40] MatrixModels_0.4-1    leiden_0.3.1          future.apply_1.3.0   
 [43] abind_1.4-5           SparseM_1.78          scales_1.1.1         
 [46] DBI_1.1.0             miniUI_0.1.1.1        Rcpp_1.0.5           
 [49] viridisLite_0.3.0     xtable_1.8-4          progress_1.2.2       
 [52] reticulate_1.16       rsvd_1.0.1            truncnorm_1.0-8      
 [55] htmlwidgets_1.5.2     httr_1.4.2            gplots_3.0.1.1       
 [58] RColorBrewer_1.1-2    ellipsis_0.3.1        ica_1.0-2            
 [61] farver_2.0.3          pkgconfig_2.0.3       dbplyr_1.4.2         
 [64] uwot_0.1.10           deldir_0.1-23         labeling_0.4.2       
 [67] tidyselect_1.1.0      rlang_0.4.10          reshape2_1.4.3       
 [70] later_1.1.0.1         cellranger_1.1.0      munsell_0.5.0        
 [73] tools_3.6.1           cli_2.2.0             generics_0.0.2       
 [76] broom_0.7.0           ggridges_0.5.1        evaluate_0.14        
 [79] yaml_2.2.1            goftest_1.2-2         mcmc_0.9-7           
 [82] npsurv_0.4-0          knitr_1.23            fs_1.3.1             
 [85] fitdistrplus_1.0-14   caTools_1.17.1.2      RANN_2.6.1           
 [88] pbapply_1.4-0         future_1.18.0         nlme_3.1-140         
 [91] whisker_0.3-2         mime_0.9              quantreg_5.73        
 [94] xml2_1.3.2            rstudioapi_0.13       compiler_3.6.1       
 [97] plotly_4.9.2.1        png_0.1-7             lsei_1.2-0           
[100] spatstat.utils_1.17-0 reprex_0.3.0          stringi_1.4.6        
[103] lattice_0.20-41       vctrs_0.3.6           pillar_1.4.7         
[106] lifecycle_0.2.0       lmtest_0.9-37         RcppAnnoy_0.0.18     
[109] data.table_1.13.0     bitops_1.0-6          irlba_2.3.3          
[112] conquer_1.0.2         httpuv_1.5.1          patchwork_1.1.0      
[115] R6_2.5.0              promises_1.1.1        KernSmooth_2.23-15   
[118] gridExtra_2.3         codetools_0.2-16      assertthat_0.2.1     
[121] MASS_7.3-52           gtools_3.8.1          rprojroot_2.0.2      
[124] withr_2.3.0           sctransform_0.3.2     mgcv_1.8-28          
[127] parallel_3.6.1        hms_0.5.3             quadprog_1.5-8       
[130] grid_3.6.1            rpart_4.1-15          coda_0.19-4          
[133] rmarkdown_1.13        ashr_2.2-47           Rtsne_0.15           
[136] git2r_0.26.1          mixsqp_0.3-43         lubridate_1.7.9      
[139] shiny_1.3.2